Pengertian Bilangan Berpangkat
Bilangan berpangkat adalah bilangan yang berfungsi untuk menyederhanakan penulisan dan penyebutan suatu bilangan yang memiliki faktor-faktor perkalian yang sama. Contoh: 3x3x3x3x3=… atau 7x7x7x7x=…
Perkalian bilangan-bilangan dengan faktor-faktor yang sama seperti ini biasa disebut sebagai perkalian berulang. Bayangkan jika yang dikalikan angkanya sangat banyak, maka kita pun juga akan sangat ribet dalam menulisnya karena sangking banyaknya untuk satu kali bilangan perkalian tersebut. Setiap perkalian berulang dapat dituliskan secara ringkas dengan menggunakan notasi angka bilangan berpangkat. Contoh:
3x3x3x3x3 ini dapat kita ringkas menggunakan bilangan berpangkat menjadi 35
8x8x8x8x8x8x8x8x8x8 dapat diringkas dengan bilangan berpangkat menjadi 810
Cara membacanya: 35 : Sepuluh pangkat 5Baca Juga : Simpangan Baku
810 : Delapan pangakt 10
Pangkat diatas berfungsi untuk menentukan jumlah faktor yang di ulang.
Rumus bilangan berpangkat adalah “an=a×a×a×a…sebanyak n kali“.
Jenis – Jenis Bilangan Berpangkat
Ada beberapa jenis bilangan berpangkat yang paling sering dibahas, yaitu: bilangan berpangkat positif (+), bilangan berpangkat negatif (-) dan bilangan berpangkat nol (0).
- Bilangan Berpangkat Positif
Bilangan berpangkat positif adalah bilangan yang memiliki pangkat atau eksponen positif. Apa itu eksponen? eksponen ialah penyebutan lain dari pangkat. Bilangan berpangkat positif memiliki sifat-sifat tertentu, yang mana bilangan tersebut terdiri dari a, b, sebagai bilangan real dan m, n, yang merupakan bilangan bulat positif. Ada beberapa sifat-sifat bilangan berpangkat positif yaitu sebagai berikut:
- am x an = am+n
- am : an = am-n , untuk m>n dan b ≠ 0
- (am)n = amn
- (ab)m = am bm
- (a/b)m = am/bm , untuk b ≠ 0
Sekarang kita sempurnakan pengetahuan kita dengan langsung melihat kecontoh soal berikut:

2. Bilangan Berpangkat Negatif
Selanjutnya adalah pengertian bilangan berpangkat negatif yaitu bilangan yang memiliki pangkat atau eksponen negatif (-). Adapun sifat-sifat bilangan berpangkat negatif yaitu:
Apabila a∈R, a ≠ 0, dan n ialah bilangan bulat negatif, jadi:

Contoh soal:
1. Tentukan dan nyatakan dengan pangkat positif bilangan berpangkat berikut ini:


jawab:

2. Nyatakan dengan pangkat negatif bilangan berpangkat berikut ini :

3. Bilangan berpangkat Nol (0)
Sahabat rumusbilangan.com, selain bilangan berpangkat positif dan bilangan berpangakt negatif diatas, ternyata dalam ilmu matematika juga ada bilangan berpangkat nol (a). Untuk itu yuk mari kita pelajari lebih dalam.
Sebelumnya kita telah mengetahui bahwa sifat-sifat bilangan berpangkat, yaitu:


. Berdasarkan sifat pembagian bilangan berpangkat positif dapat tersebut maka kita peroleh: .

Sehingga sifat untuk bilangan berpangkat nol (0) ialah “Apabila a adalah bilangan riil dan a tidak sama dengan 0, maka “
Untuk lebih jalas nya yuk kita simak soal-soal berikut:Baca Juga : Mengenal Komposisi Fungsi Mulai Dari Pengertian, Sifat, Bentuk dan Contoh Soalnya Lengkap
Sederhanakan bilangan berpangkat tersebut ini:

Jawab:

Demikianlah pembahasan kita mengenai bilangan berpangkat, sekarang kita lanjutkan ke pembahasan yang ke dua yaitu Bentuk Akar, yuk tengok kebawah:
Pengertian Bentuk Akar
Bentuk akar Adalah akar dari suatu bilangan-bilangan yang hasilnya bukan termasuk bilangan rasional (bilangan yang mencakup bilangan cacah, bilangan prima, dan bilangan-bilangan lain yang termasuk) atau bilangan irasional (yaitu bilangan yang hasil baginya tidak pernah berhenti).
Bentuk akar yaitu bentuk lain untuk menyatakan suatu bilangan yang berpangkat. Bentuk akar termasuk kedalam bilangan irasional yang mana bilangan irasional tidak dapat dinyatakan dengan pecahan a/b, a dan b bilangan bulat a dan b ≠ 0. Bilangan bentuk akar adalah bilangan yang terdapat dalam tanda √ yang disebut sebagai tanda akar.
Beberapa contoh bilangan irasional didalam bentuk akar yaitu √2, √6, √7, √11 dan lain-lain. Sedangkan √25 bukanlah bentuk akar karena √25 = 5 (5 adalah bilangan rasional) sama saja angka 25 bentuk akarnya adalah √5.
Simbol akar “√” pertama kali dikenalkan oleh matematikawan asal Jerman yaitu Christoff Rudoff, di dalam bukunya yang berjudul Die Coss. Simbol tersebut dipilih karena mirip dengan huruf ” r ” yang diambil dari kata “radix”, yang merupakan bahasa latin untuk akar pangkat dua.
Sebagaimana bilangan berpangkat yang memiliki beberapa sifat-sifat, Bentuk akar pun juga memiliki sifat-sifat, yaitu:
- √a2 = a
- √a x b = √a x √b : a ≥ 0 dan b ≥ 0
- √a/b = √a/√b dan b ≥ 0
Atau bisa dilihat gambar dibawah:

Contoh Soal Bentuk Akar

Persamaan Kuadrat
Persamaan kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Bentuk umumnya adalah:
Punya PR yang gak ngerti? Yuk tanya di Forum StudioBelajar.com
Dengan a, b, merupakan koefisien, dan c adalah konstanta, serta .Lihat juga materi StudioBelajar.com lainnya:
Logika Matematika
Penjumlahan dan Perkalian Trigonometri
Penyelesaian atau pemecahan dari sebuah persamaan ini disebut sebagai akar-akar persamaan kuadrat. Akar-akar merupakan nilai dari variabel x yang memenuhi persamaan tersebut. Ketika nilai tersebut disubstitusikan ke dalam persamaan akan menghasilkan nilai nol.
Akar-akar Persamaan Kuadrat
Ada tiga metode dalam mencari akar-akar persamaan kuadrat yaitu:
Pemfaktoran
Metode ini mudah digunakan jika akar-akarnya merupakan bilangan rasional. Berikut ini tabel model persamaan kuadrat (PK) dan berbagai cara pemfaktorannya:

Saat menggunakan metode ini, pertama harus mengetahui terlebih dahulu model PK yang akan diselesaikan. Jika model PK sudah diketahui, maka pemfaktoran bisa dilakukan dalam bentuk sesuai dengan yang ada di kolom tabel di atas. Untuk mendapatkan nilai p, q, m dan n kalian harus memahami cara memfaktorkan suatu bilangan.
Melengkapkan Kuadrat Sempurna
Metode melengkapkan kuadrat sempurna akan mudah digunakan jika koefisien a dibuat agar bernilai 1. PK dalam bentuk diubah bentuk menjadi persamaan:
Dengan p dan q adalah konstanta serta x adalah variabel. Nilai dari konstanta p dan q dari persamaan didapatkan dengan cara:
Perubahan tersebut dapat dibuktikan sebagai berikut :
Rumus abc
Metode rumus abc ini bisa digunakan jika pemfaktoran dan melengkapkan kuadrat sempurna tidak bisa dilakukan. Nilai dari akar-akar persamaan kuadrat didapatkan dari rumus abc berikut:
Sehingga, akar-akarnya adalah
Jenis Akar-akar Persamaan Kuadrat
Jenis akar-akar persamaan kuadrat dapat ditentukan dengan mengetahui nilai “Diskriminan” (D). Nilai diskriminan terdapat dalam rumus abc sebagai :
Sehingga rumus abc menjadi:
Tanda akar diskriminan dalam rumus abc menentukan jenis dari akar-akar persaaman kuadrat, apakah bilangan real atau tidak real. Sehingga jenis akar-akar PK adalah:
- Jika D < 0 maka akar-akarnya tidak real.
- Jika D > 0 maka akar-akarnya real () dan berbeda ().
- Jika D = 0 maka akar-akarnya real () dan sama atau kembar ().
Jumlah dan Hasil Kali Akar-akar
Penjumlahan dan perkalian akar-akar persamaan dapat dilakukan tanpa harus mengetahui nilai dari akar-akarnya. Jumlah akar-akar dapat diperoleh dengan :
Sedangkan hasil kali akar-akar dapat diperoleh dengan:
Dari penjabaran tersebut dapat diketahui bahwa :
- Penjumlahan akar-akar .
- Perkailan akar-akar .
Ada beberapa bentuk pernyataan matematika yang bisa dirubah kedalam () dan (). Tujuan dari perubahan bentuk ini untuk memudahkan dalam peyelesaian persoalan. Perubahan ini dapat dilakukan dengan menggunakan sifat-sifat aljabar. Berikut ini sebagai contoh bentuk-bentuk perubahan:
Menyusun Persamaan Kuadrat Baru
Suatu persamaan kuadrat baru dapat dibentuk jika diketahui nilai dari akar-akarnya. Hal tersebut dapat dilakukan dengan memasukan atau mensubstitusi nilai dari akar-akar yang telah diketahui kedalam persamaan
atau
Suatu persamaan kuadrat baru juga dapat dibentuk walaupun tidak ada diketahui nilai dari akar-akarnya. Dengan syarat, akar-akar tersebut memiliki hubungan atau relasi dengan akar-akar dari PK yang lain.
Contoh Soal Persamaan Kuadrat dan Pembahasan
Contoh Soal 1
Persamaan kuadrat dari mempunyai akar-akar m dan n dengan ketentuan m < n. Tentukan nilai dari n – m.
Pembahasan:
Soal ini dapat diselesaikan dengan cara melengkapkan kuadrat yang dirubah menjadi . Dimana:
Kemudian disubstitusikan ke dalam persamaan
Didapatkan akar-akarnya dengan syarat m < n adalah
Maka,
Contoh Soal 2
Suatu persamaan kuadrat memiliki akar-akar p dan q. Tentukan nilai dari .
Pembahasan :
Berdasarkan persamaan diketahui bahwa:
Sehingga diperoleh
Contoh Soal 3
Suatu persamaan kuadrat memiliki akar-akar p dan q. Tentukan persamaan kuadrat baru dengan akar-akar (p + q) dan (2pq).
Pembahasan :
Berdasarkan persamaan diketahui bahwa :
Sehingga akar-akar dari persamaan kuadrat baru adalah :
Persamaan kuadrat baru diperoleh :
atau
Kontributor: Alwin Mulyanto, S.T.
Alumni Teknik Sipil FT UI
Materi StudioBelajar.com lainnya: